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Abstract— This paper deals with the motion of a multi-legged
modular robot. The robot consists of six homogenous modules,
each of which has a body and two legs and is connected to the
others through a three-degree-of-freedom joint. The leg joints are
manipulated to follow periodic desired trajectories, and the joints
between the modules act like a passive spring with a damper.
This robot has characteristic dynamic properties. Specifically,
a straight walk naturally turns into a meandering walk by
changing the compliance of the joints between the modules
without incorporation of any oscillatory inputs. We first show
that this transition is excited due to a Hopf bifurcation, based
on a numerical simulation and Floquet analysis. Following that,
we examine whether the maneuverability and agility increase
by utilizing the dynamic characteristics inherent in the robot. In
particular, we conduct an experiment in which the robot pursues
a target moving across the floor. We propose a simple controller
to accomplish the task and achieve high maneuverability and
agility by making the most of the robot’s dynamic features.

I. INTRODUCTION

Modular robots consist of a set of robotic modules that
change the configuration and strength of their connection,
which allows them to deal with a wide variety of tasks. In
the literatures, many modular robots have been developed that
have capabilities such as self-reconfiguration, fault tolerance,
and locomotion [6], [10], [35], [36]. In particular, legged-
type modular robots, which are specialized for locomotion,
have high possibility to move across uneven terrain and high
adaptability to various environments [18], [19], [31]. They are
expected to display their great ability in a lot of places.

However, we still have many difficulties to achieve sophis-
ticated legged robots and their control system. In particular,
1) the robot is a mechanical system with many degrees of
freedom, composed of many links that are connected with
others by joints, some of which are redundant in achieving
its walking. The essential problem is how to coordinate their
motions; 2) the leg motion consists of the swing and stance
phases. The swing leg lands on the ground and in turn becomes
the stance leg. Therefore, periodically and intermittently, the
legs receive reaction forces from the ground. In other words,
the condition of foot-to-ground contact is changeable, resulting
in changes of the dynamics that governs the walking motion
and influencing the walking stability. To overcome these
difficulties, studies have been widely carried out based on
the model-based approach [5], [16]. In this approach, the
robot motion is basically generated by the inverse kinematics
and kinetics, for example, by calculating the foot landing
positions to keep the walk stable and then computing the joint

motions. However, complicated computations are required, as
are precise modeling of the robot and environment, which
restricts the possibility of attaining adaptability and robustness.
In addition to these difficulties, a robot that possesses many
legs has the following characteristic problem: since its many
legs are in contact with the ground and support the robot, they
keep the robot from falling over. However, all those contact
legs also keep the robot from accomplishing maneuverable and
agile motions such as a quick turn. Therefore, it is difficult to
simply design a locomotion control system and achieve high
adaptability and maneuverability of the robot motion.

This is contrast to the millions of animal species that adapt
themselves to various environments by manipulating their
complicated and redundant musculoskeletal system, giving
them marvelous maneuverability and agility. Recently, many
researchers have developed biologically inspired robots and
aimed to clarify the control mechanisms of animals. Espe-
cially, neurophysiological studies have revealed that animal
walking is generated by a central pattern generator (CPG) [17],
[23]. A CPG comprises a set of neural oscillators present in
the spinal cord, spontaneously generating rhythmic signals that
activate their limbs. The CPG modulates signal generation in
response to the sensory signals, resulting in adaptive motions.
The CPG is widely modeled using nonlinear oscillators [28],
and based on such CPG models many locomotion robots and
their control systems have been developed [2], [4], [8], [11],
[18], [22]. Also from the field of neurophysiology, it has been
revealed that, as well as rhythm control, muscle tone control
has an important role in generating adaptive motions [21],
[29], suggesting the importance of compliance in locomotion.
Actually, many studies on robotics demonstrated the essential
roles of the compliance. Specifically, by appropriately em-
ploying the mechanical compliance, simple control systems
attained highly adaptive, robust, and agile motions, especially
in hexapod robots [7], [9], [25], quadruped robots [11], [24],
and biped robots [30], [34].

Animals generate their motions by skillfully applying the
intrinsic characteristics of their musculoskeletal system. In
particular, many researchers have used simple models and
analyzed self-stabilizing properties embedded in their muscu-
loskeletal system that indicates to accomplish stable motions
without depending on external sensors [14], [15], [26], [33].
As well as with animals, many studies have been carried out to
elucidate such self-stabilization inherent in locomotion robots
also by employing simple models [1], [3], [13].
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Dynamic characteristics such as stability must strongly
affect the maneuverability and agility of locomotion. For
example, cockroaches are highly agile and have a great range
of maneuverability [12], [20]. Schmitt and Holmes [26], [27]
simply modeled the hexapod walking of a cockroach, and then
analytically demonstrated that it successfully achieves a quick
turn by virtue of destabilizing its straight walking motion by
changing its dynamic features. It would be very interesting
and helpful if we attained such maneuverability and agility of
locomotion robots by using the dynamic properties inherent
in the robots.

In this paper, we deal with a multi-legged modular robot
composed of six homogenous modules and in particular we
study its rudimentary locomotion. Each module has two legs
and the modules are connected to each other through a three-
degree-of-freedom (DOF) rotary joint. The robot has a simple
controller that generates periodic leg trajectories. The leg joints
are manipulated to follow periodic desired trajectories and
each joint between modules acts like a passive spring with a
damper. This robot features characteristic dynamic properties.
Specifically, a straight walk by the robot naturally turns into
a meandering walk by changing the strength of the connec-
tion between the modules without actually incorporating any
oscillatory inputs. That is, the dynamic stability of a straight
walk varies depending on the compliance of the joints between
the modules. We show that the transition from a straight to a
meandering walk is excited due to a Hopf bifurcation, based
on a numerical simulation and Floquet analysis.

As described above, it is difficult for a locomotion robot that
has many legs to achieve agile motions such as a quick turn
because of the contact legs and motion planning. Since such a
motion is a fundamental behavior for a locomotion robot, its
dynamic characteristics should be thoroughly analyzed and the
problem should be solved. Although the model-based approach
is generally used, it requires precise modeling and complicated
computations, preventing from achieving adaptive locomotion
and simple control system. In this paper, we especially focus
on the dynamic characteristics embedded in the multi-legged
modular robot as one of the solutions to the problem. In par-
ticular, we investigate whether the maneuverability and agility
of the robot increase by using the dynamic characteristics. We
conduct an experiment in which the robot pursues a target
moving across the floor. We then propose a simple controller
to accomplish the task and achieve high maneuverability and
agility by making the most of the robot’s dynamic features.

II. A MULTI-LEGGED MODULAR ROBOT

A. Robot Model

Figure 1 shows a schematic diagram of the multi-legged
modular robot considered in this paper. The robot has six
homogenous modules, each with one body and two legs.
Each leg consists of three links that are connected to each
other through a one-DOF rotational joint (see Fig. 2). The
legs are articulated to the body also by a one-DOF rotational
joint. Each module is connected to the next through a coupler
composed of roll, pitch, and yaw joints, with each joint

Module 1

Module 2

Module 6

Coupler 1

Coupler 5

Body

Leg 1

Leg 2

Fig. 1. Schematic model of a multi-legged modular robot

manipulated by a motor. The modules are enumerated from
Module 1 to Module 6, and the coupler between Module i
and Module (i+1) is numbered Coupler i (i = 1, . . . , 5). The
left and right legs are numbered Legs 1 and 2, respectively.
The joints and links of each leg are numbered from the side
of the body as Joints 1, 2, and 3 and Links 1, 2, and 3,
respectively. The position vector of the body of Module 1
is given by vector [x1 x2 x3 ] expressed on the ground, where
x1 and x3 are toward the nominal direction of locomotion and
the vertical direction, respectively. The posture of the body
of Module 1 is given by Euler angles [ θ11 θ12 θ13 ], where
θ11, θ12, and θ13 correspond to roll, pitch, and yaw angles,
respectively. Similarly, angles θim (i = 2, . . . , 6, m = 1, 2, 3)
are the components of relative angles of Module i with respect
to Module (i− 1), which correspond to the angles of Coupler
(i−1). Angles θjik (i = 1, . . . , 6, j = 1, 2, k = 1, 2, 3) are the
relative angles of Joint k of Leg j of Module i.

State variable q ∈ R
57 is defined as qT = [xm θim θ

j
ik ]

(i = 1, . . . , 6, j = 1, 2, k = 1, 2, 3, m = 1, 2, 3). An equation
of motion for the state variable is derived using Lagrangian
formulation by

M(q)q̈ +H(q, q̇) = G(q) + U + Λ (1)

where M(q) ∈ R
57×57 is the inertia matrix, H(q, q̇) ∈ R

57

is the nonlinear term that includes Coriolis and centrifugal
forces, G(q) ∈ R

57 is the gravity term, U ∈ R
57 is the input

torque term, and Λ is the reaction force from the ground. The
ground is modeled as a spring with a damper in the vertical
direction and a viscous damper in the horizontal direction. In
this paper, numerical simulations are carried out based on this
equation of motion.

B. Clock-driven Leg Controller

The robot has a simple clock-driven, open-loop gait. The
joints of the robot are manipulated by motors using a
proportional-derivative (PD) controller. Specifically, the leg
joints are controlled by incorporating periodic desired angles,
while the coupler joints are controlled without using such
desired angles. Therefore, in that sense, the coupler joints act
like a passive spring with a damper.

To design the periodic desired angles of the leg joints, we
first introduce Oscillator i, j (i = 1, . . . , 6, j = 1, 2) for Leg
j of Module i. Oscillator i, j has phase φji whose angular
velocity is constant. Second, we design nominal trajectory ηji
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Fig. 2. Nominal trajectory of the leg

(i = 1, . . . , 6, j = 1, 2) of the tip of Leg j of Module i
in the sagittal plane as a function of phase φji , that is, ηji =
ηji (φ

j
i ). Trajectory ηji is expressed in the body of Module i and

consists of trajectories ηjswi for the swing phase and ηjsti for the
stance phase (i = 1, . . . , 6, j = 1, 2) (see Fig. 2). Trajectory
ηjswi is composed of half of an elliptic curve that includes
the anterior extreme position (AEP) and the posterior extreme
position (PEP). Note that the distance between points AEP and
PEP implies nominal stride s. Trajectory ηjsti is comprised of
a straight line that also involves points AEP and PEP. During
the stance phase, the tip of the leg moves at constant speed
v(= s/(βτ)) with respect to the body in the opposite walking
direction, where τ is the nominal step cycle and β indicates the
nominal duty ratio that expresses the ratio between the nominal
stance phase duration and the nominal step cycle. Note that
since the tip of the leg is constrained on the ground during
the stance phase, the body moves in the walking direction at
nominal locomotion speed v with respect to the ground. In
light of the above description, trajectory ηji is given by (see
details in [2])

ηji (φ
j
i ) =

{
ηjswi(φ

j
i ) 0 ≤ φji < φa

ηjsti(φ
j
i ) φa ≤ φji < 2π

i =1, . . . , 6, j =1, 2 (2)

where φa = 2π(1 − β), which indicates the nominal phase
value at point AEP (0 at point PEP). When trajectory ηji is on
point PEP at t = 0, it arrives at point AEP at t = (1 − β)τ
through the swing phase and turns into the stance phase. It then
reaches point PEP at t = τ and returns to the swing phase.
Finally, based on the inverse kinematics, we obtain desired
angles θ̂jik (i = 1, . . . , 6, j = 1, 2, k = 1, 2, 3) of Joint k of
Leg j of Module i as the function of phase φji .

In numerical simulations, the contralateral legs on each
module and the unilateral legs on adjacent modules move out
of phase with each other. That is, the phases of the oscillators
have relationships such that φ1

i − φ2
i = π (i = 1, . . . , 6) and

φji − φji+1 = π (i = 1, . . . , 5, j = 1, 2). Nominal stride s,
duty ratio β, and step cycle τ of each leg are set to 5 cm, 0.5,
and 0.5 s, respectively. In this case, nominal locomotion speed
v becomes equivalent to 0.2 m/s. Point AEP of both legs of
each module is located 4.5 cm ahead and 7.5 cm outside of the
center of the module in the nominal direction of locomotion.

III. DYNAMIC PROPERTIES

A. Transition from a Straight to a Meandering Walk

This robot has interesting and essential characteristics in
locomotion. Since the couplers act like a spring with a damper,
the robot is able to achieve a straight walk as long as it

TABLE I

PHYSICAL PARAMETERS OF THE MULTI-LEGGED MODULAR ROBOT

Link Parameter Value
Body Mass [kg] 0.6

Length [m] 0.2
Width [m] 0.08
Inertia [×10−3kgm2] 3.1

Link 1 Mass [kg] 0.02
Length [m] 0.015

Link 2 Mass [kg] 0.03
Length [m] 0.045

Link 3 Mass [kg] 0.05
Length [m] 0.15

Motor Gear ratio 100
Rotor inertia [×10−7kgm2] 9.7

Fig. 3. Yaw angle of Coupler 3, θ43, at φ1
1 = 0 versus the reciprocal of

gain parameter K−1
i3

moves its legs in a similar manner. However, it is clear
that when we decrease the feedback gains of the couplers’
yaw joints, a meandering walk appears beyond a critical
point without incorporation of any oscillatory inputs into the
couplers. This means that the robot’s walking motion naturally
varies according to changes in its mechanical properties.

Here, we present detailed results obtained through numerical
simulations. Table I displays the physical parameters of the
multi-legged modular robot used in the numerical simulations.
The damping coefficient of the ground in the horizontal direc-
tion is set to 19.6 Ns/m. To change the mechanical features of
the robot, we parameterize proportional feedback gain Ki3 and
derivative feedback gain Di3 (i = 2, . . . , 6) of the couplers’
yaw joints by using parameter f

Ki3 = K0(2πf)2, Di3 = 2K0ζ(2πf) i = 2, . . . , 6 (3)

where K0 and ζ are set to 0.0097 and 0.8, respectively. Note
that for other joints high feedback gains are used and param-
eter f is set to 10 (e.g. K−1

i1,2 = 0.0261, i = 2, . . . , 6). Also
note that this change of the feedback gains indicates a change
in the joints’ compliance. Figure 3 shows yaw angle θ43 of
Coupler 3 at φ1

1 = 0 with respect to the reciprocal of gain
parameter K−1

i3 , revealing that undulatory motion is excited
over a bifurcation point. This figure also implies that since
the angles are plotted with respect to each step cycle of the
leg motion, this meandering motion is not synchronized with
the leg motion. Therefore, it has an independent frequency
(see details in Fig. 7(c) shown below). Figures 4(a) and (b)
are snapshots of the front and overhead views, respectively,
of the walking motion using K−1

i3 = 21, showing that wavy
motion appears.



(a)

(b)

Fig. 4. Meandering motion. (a) Front view. (b) Overhead view.

B. Investigation of the Transition Mechanism
As shown above, a straight walk naturally turns into a

meandering walk by changes in the mechanical characteristics.
This transition is expected to imply that a straight walk is
destabilized and that undulatory motion is excited due to a Hopf
bifurcation. In this section we analyze its mechanism in detail.

To investigate it, we simplify the robot model by assuming
the following for its straight walk [32]: 1) the up-and-down,
roll, and pitch motions of the robot are sufficiently small with
respect to other motions and can be ignored; 2) the leg mass
is too small in comparison to the body mass and the leg joints
completely follow the kinematically designed trajectories as
shown in Fig. 2; and 3) the robot walks at constant speed v.
Figure 5 shows an overhead view of this simplified model.
Note that the legs receive the force from the ground, only
when they are in the stance phase.

Under these assumptions, state variable q ∈ R
8 is redefined

as qT = [x1 x2 θ13 · · · θ63 ]. Then, we define state ξ ∈ R
16

as ξT = [ q̇T qT ]. In a straight walk, state ξ can be written as
ξT

str = [ v 0 · · · 0 vt + x10 0 · · · 0 ], where x10 is the state of
x1 at t = 0. Perturbed state ξ ∈ R

16 from a straight walk is
defined as ξ = ξstr + δξ, where δξ ∈ R

16 is the perturbation.
By contracting equation of motion (1) and then linearizing it
around state ξstr, we obtain

δ̇ξ = A(t)δξ (4)

where matrix A(t) ∈ R
16×16 is periodic and A(t+ τ) = A(t)

for step cycle τ of the leg motion.
Based on the Floquet theory, we analyze the stability of

a straight walk, where for the simplified model the mass and
inertial of each module are set to 0.8 kg and 4.2×10−3 kgm2,
respectively. Figures 6(a) and (b) show the trajectories of the
Floquet (characteristic) exponents while the feedback gains of
the yaw joints of the couplers change. Specifically, Fig. 6(a)
shows all the trajectories of the Floquet exponents, revealing
that a Hopf bifurcation occurs by crossing the imaginary axis.
Displayed circles indicate all the 16 Floquet exponents when
the Hopf bifurcation takes place, where red circles correspond
to the Hopf bifurcation. Figure 6(b) shows trajectories in detail
by focusing on the vicinity of the imaginary axis.

Next, we verify whether this Hopf bifurcation actually ex-
plains the transition from a straight to a meandering walk ob-

x1

x2

θ13 θ23 θ33

v

v

v

Module 1 Module 2 Module 3

Fig. 5. Overhead view of the simplified model
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Fig. 6. Floquet exponents. (a) Trajectories of all the Floquet exponents.
(b) Enlarged detail.

tained in numerical simulations. Figure 7 shows a comparison
between the results of the numerical simulation and Floquet
analysis, where the obtained meandering motion is used for
the numerical simulation and the eigenvector corresponding
to the destabilized Floquet exponent is used for the Floquet
analysis. In particular, Figs. 7(a), (b), and (c) illustrate the
phase difference with respect to angle θ13, the amplitude ratio
between the angles, and the period of the meandering motion,
respectively. Although the simplification causes some errors,
these results are almost the same in quality and quantity.
Therefore, we conclude that the transition from a straight to a
meandering walk is caused by a Hopf bifurcation due to the
change of the couplers’ yaw joints.

IV. TURNING MANEUVER USING DYNAMIC PROPERTIES

Dynamic characteristics such as stability must greatly affect
the maneuverability and agility of locomotion. Schmitt and
Holmes [26], [27] simply modeled the hexapod walking of
a cockroach, which has marvelous agility, and analytically
demonstrated that it successfully achieves a quick turn by
virtue of destabilizing its straight walk through changing its
dynamic features.

In this section, we investigate the relationship between the
dynamic features and maneuverability of the robot. To clarify
this relationship, we have the robot pursue a target moving
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Fig. 7. Comparison between numerical and analytical results. (a) Phase
difference with respect to θ13. (b) Amplitude ratio between angles. (c) Period
of meandering motion.

across the floor. A camera is attached to the head of Module 1
whose elevation angle is −30◦. From the visual image taken
by the camera, the robot can obtain direction angle ψθ and
distance angle ψs (see Figs. 8(a) and (b)). The center of vision
is the intersection point between the ground and the visual
line of the camera, whose position is expressed by [ η1 η2 ] on
the floor. The position of the target is [ ζ1 ζ2 ]. The sampling
frequency of the visual information is set to be 20 Hz. By
using information ψθ and ψs, the robot attempts to follow the
moving target.

To manipulate the walking direction, input torque τ13 at the
yaw joint of Coupler 1 is activated by incorporating the desired
angle regarding visual information ψθ, given by

τ23 = −K23(θ23 + ψθ) −D23θ̇23 (5)

where feedback gains K23 and D23 are fixed and parameter f
in Eq. (3) is set to 1.0 for them. The aim of this control is to
point the first module in the direction of the target and then
make the other modules follow the first module through their
passive connections. To approach the target, by using visual
information ψs, stride s is determined by

s = Ksψs (6)

where Ks is set to 0.191 m/rad and stride s is limited with a
saturation at ±5 cm.

In the task of pursuing the target, the target moves along a
trajectory composed of connected straight lines at a constant
speed 0.18 m/s (see Fig. 10). We carry out this task with

Center of vision
[ζ1 ζ2]

Target
[η1 η2]

Module 1

Coupler 1

Camera

θ13

θ23

ψθ

x1

x2

(a)

Center of
visionTarget

Module 1Camera

θ12 + 30◦ s

ψs

(b)

Fig. 8. Target pursuit. (a) Direction ψθ . (b) Distant angle ψs.
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respect to feedback gains Ki3 and Di3 of the couplers’ yaw
joints except for Coupler 1 (i = 3, . . . , 6), given in Eq. (3).
To examine the agility of locomotion, we employ evaluation
criterion V , which represents the mean square error between
the target and center of vision, given by

V =
1
τtask

∫ τtask

0

√
(η1 − ζ1)2 + (η2 − ζ2)2 dt (7)

where τtask is the time interval to execute this task (set to
80 s). Figure 9 shows evaluation criterion V with respect to
the reciprocal of gain parameter K−1

i3 . Figures 10(a) and (b)
show the trajectories of the target and center of vision , and of
the target and Module 1, respectively, during the target pursuit,
especially with respect to K−1

i3 = 0.1, 16, and 45. These
figures show that the robot achieves high maneuverability and
agility by using the feedback gain around the bifurcation point
where a straight walk turns into a meandering one. When the
feedback gains are larger than the bifurcation point, evaluation
criterion V also larger. This reflects that the robot is unable
to obtain sufficient maneuverability, which makes the modules
behind Module 1 unable to smoothly follow Module 1. When
the feedback gains are smaller than the bifurcation point,
evaluation criterion V also larger. It is partly because the un-
dulatory motion is excited during target pursuit. These results
imply that the decrease in stability during a straight walk, due
to a reduction in the strength of the connection between the
modules, helps the robot to efficiently accomplish this task. In
other words, the robot appears to achieve its maneuverability
and agility by virtue of changes in the dynamic characteristics.
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V. CONCLUSION

In this paper, we dealt with locomotion of a six-module,
twelve-legged robot. In particular, we showed that a straight
walk by this robot naturally changes into a meandering walk
by changes in the compliance of the yaw joints between the
modules without incorporation of any oscillatory inputs. Based
on the Floquet theory, we first clarified that this transition re-
flects that a straight walk is destabilized and undulatory motion
is excited due to a Hopf bifurcation. Then, we investigated the
role of this dynamic property in achieving maneuverability and
agility, conducting an experiment in which the robot pursued
a target moving across the floor. By using the proposed simple
controller, the robot accomplished the task and performed high
maneuverability and agile motions by making the most of the
dynamic characteristics inherent in it.
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